16. All pigs are fat; No skeletons are fat.

17. No monkeys are soldiers; All monkeys are mischievous.

18. None of my cousins are just; No judges are unjust.

19. Some days are rainy; Rainy days are tiresome.

20. All medicine is nasty; Senna is a medicine.

21. Some Jews are rich; All Patagonians are Gentiles.

22. All teetotalers like sugar; No nightingale drinks wine.

23. No muffins are wholesome; All buns are unwholesome.

24. No fat creatures run well; Some greyhounds run well.

25. All soldiers march; Some youths are not soldiers.

26. Sugar is sweet; Salt is not sweet.

27. Some eggs are hard-boiled; No eggs are uncrackable.

28. There are no Jews in the house; There are no Gentiles in the garden.

[See pp. 75-82]

29. All battles are noisy; What makes no noise may escape notice.

30. No Jews are mad; All Rabbis are Jews.

31. There are no fish that cannot swim; Some skates are fish.

32. All passionate people are unreasonable; Some orators are passionate.

[See pp. 82-84]

CHAPTER III.

CROOKED ANSWERS.

"I answered him, as I thought good, 'As many as red-herrings grow in the wood'."

__________

1. Elementary.

1. Whatever can be "attributed to", that is "said to belong to", a Thing, is called an 'Attribute'. For example, "baked", which can (frequently) be attributed to "Buns", and "beautiful", which can (seldom) be attributed to "Babies".

2. When they are the Names of two Things (for example, "these Pigs are fat Animals"), or of two Attributes (for example, "pink is light red").

3. When one is the Name of a Thing, and the other the Name of an Attribute (for example, "these Pigs are pink"), since a Thing cannot actually BE an Attribute.

4. That the Substantive shall be supposed to be repeated at the end of the sentence (for example, "these Pigs are pink (Pigs)").

5. A 'Proposition' is a sentence stating that some, or none, or all, of the Things belonging to a certain class, called the 'Subject', are also Things belonging to a certain other class, called the 'Predicate'. For example, "some new Cakes are not nice", that is (written in full) "some new Cakes are not nice Cakes"; where the class "new Cakes" is the Subject, and the class "not-nice Cakes" is the Predicate.

6. A Proposition, stating that SOME of the Things belonging to its Subject are so-and-so, is called 'Particular'. For example, "some new Cakes are nice", "some new Cakes are not nice."

A Proposition, stating that NONE of the Things belonging to its Subject, or that ALL of them, are so-and-so, is called 'Universal'. For example, "no new Cakes are nice", "all new Cakes are not nice".

7. The Things in each compartment possess TWO Attributes, whose symbols will be found written on two of the EDGES of that compartment.

8. "One or more."

9. As a name of the class of Things to which the whole Diagram is assigned.

10. A Proposition containing two statements. For example, "some new Cakes are nice and some are not-nice."

11. When the whole class, thus divided, is "exhausted" among the sets into which it is divided, there being no member of it which does not belong to some one of them. For example, the class "new Cakes" is "exhaustively" divided into "nice" and "not-nice" since EVERY new Cake must be one or the other.

12. When a man cannot make up his mind which of two parties he will join, he is said to be "sitting on the fence"--not being able to decide on which side he will jump down.

13. "Some x are y" and "no x are y'".

14. A Proposition, whose Subject is a single Thing, is called 'Individual'. For example, "I am happy", "John is not at home". These are Universal Propositions, being the same as "all the I's that exist are happy", "ALL the Johns, that I am now considering, are not at home".

15. Propositions beginning with "some" or "all".

16. When they begin with "some" or "no". For example, "some abc are def" may be re-arranged as "some bf are acde", each being equivalent to "some abcdef exist".

17. Some tigers are fierce, No tigers are not-fierce.

18. Some hard-boiled eggs are unwholesome, No hard-boiled eggs are wholesome.

19. Some I's are happy, No I's are unhappy.

20. Some Johns are not at home, No Johns are at home.

21. The Things, in each compartment of the larger Diagram, possess THREE Attributes, whose symbols will be found written at three of the CORNERS of the compartment (except in the case of m', which is not actually inserted in the Diagram, but is SUPPOSED to stand at each of its four outer corners).

22. If the Universe of Things be divided with regard to three different Attributes; and if two Propositions be given, containing two different couples of these Attributes; and if from these we can prove a third Proposition, containing the two Attributes that have not yet occurred together; the given Propositions are called 'the Premisses', the third one 'the Conclusion', and the whole set 'a Syllogism'. For example, the Premisses might be "no m are x'" and "all m' are y"; and it might be possible to prove from them a Conclusion containing x and y.

The Game of Logic Page 15

Lewis Carroll Children's Books

Fairy Tales and Children's Books

Free Books in the public domain from the Classic Literature Library ©

Children's Books
Classic Literature Library

All Pages of This Book
Children's Picture Books